
Compositional and Relational Reasoning
During Class Abstraction

Alexander Egyed

Teknowledge Corporation, 4640 Admiralty Way, Suite 1010,
Marina Del Rey, CA 90292, USA, aegyed@acm.org

Abstract. Class diagrams are among the most widely used object-oriented de-
sign techniques. They are effective in modeling the structure of software sys-
tems at any stages of the software life cycle. Still, class diagrams can become as
complex and overwhelming as the software systems they describe. This paper
describes a technique for abstracting lower-level class structures into higher-
level ones by ‘collapsing’ lower-level class patterns into single, higher-level
classes and relationships. This paper is an extension to an existing technique
that re-interprets the transitive meaning of lower-level classes into higher-level
relationships (relational reasoning). The existing technique is briefly summa-
rized. The extensions proposed in this paper are two-fold: This paper augments
the set of abstraction rules to also collapse class patterns into higher-level
classes (compositional reasoning). While this augmentation is simple and in
sync with traditional views of refinement and abstraction, it has drawbacks in
defining class features like methods and attributes. This paper thus also demon-
strates how to filter low-level class features during abstraction. Our approach
requires some human guidance in deciding when to use compositional or rela-
tional reasoning but is otherwise fully automated. Our approach is conservative
in its results guaranteeing completeness but at the expense of some false posi-
tives (i.e., the filter errs in favor of not eliminating in case of doubt). The pro-
posed technique is applicable to model understanding, inconsistency detection,
and reverse engineering.

1 Introduction

Software systems are often compositions of high-level components. During the design,
those high-level components are gradually refined into lower-level components. In
most cases, a refinement step implies an increase in the number of model elements.
This benefits the gradual exploration of a problem space that does not require com-
plete, initial knowledge about a software system. Instead knowledge is added incre-
mentally in response to decisions made along the way (i.e., spiral model [1]).

One of the most widely used design languages is the class diagram [12] because it
can model a software system throughout its life cycle. Early on, classes and relation-
ships can describe high-level components and their interactions. Refining classes and
relationships gradually extends class structures. Over time, class structures may reach
a refinement level that allows direct code generation.

Proceedings of the 6th International Conference on the Unified Modeling
Language (UML), San Francisco, USA, October 2003

Nonetheless, there are problems associated with the use of class diagrams. The re-
finement process is a complicated task and becomes increasingly difficult with the size
of the design. This cannot be avoided since refinement steps tend to increase the num-
ber of elements in the class structure. As a consequence, understanding a class struc-
ture and reasoning in its presence becomes more complex over time – naturally in
response to the larger size but also because of fragmentation. Fragmentation occurs
because refinement is not limited to the addition of new elements but it may also re-
place or substitute existing elements. For instance, a single design element may be
replaced by several new design elements to more precisely describe its meaning. As a
result, single higher-level elements can only be recognized within clusters of low-level
elements. This loss of simplicity is a severe problem for large-scale software devel-
opment because developers lose oversight more easily leading to confusion, ineffi-
ciency, and error.

It is sometimes attempted to maintain separate class structures that describe the
same system at different levels of detail. This solution is flawed due to maintainability
concerns (i.e., inconsistencies) since evolutionary changes have to be performed on all
class structures separately. This is a time consuming and costly task [4], and it is
flawed since human error may result in inconsistent updates. Developers thus cannot
rely on separately maintained class structures.

Our approach extends an existing technique [4] to avoid the above maintenance
problem. It does so by translating (abstracting) lower-level class structures into
higher-level ones on demand. It requires some manual guidance in defining the cluster
of related, lower-level model elements. A combination of reasoning techniques is then
used to analyzes the low-level class structure to translate its elements into a higher-
level class structure according to the clusters defined. The result is a new, simpler,
higher level class structure that is consistent with the lower-level class structure.

The approach can be used to periodically ‘zoom-out’ of arbitrary complex class
diagrams to investigate and understand their bigger picture. It is lightweight and com-
putationally not very expensive. It is oblivious to evolutionary changes since new
abstractions can be generated on demand and discarded thereafter. Roughly a dozen
complex, real-world class diagrams were used to evaluate its usefulness. The result of
this evaluation showed that generated abstraction results were reliable in most cases
although errors did occur. Manual inspection and intervention is thus required to make
abstraction results more reliable (i.e., semi automation).

2 Case Study

This paper uses a case study to motivate the need for abstraction and to demon-
strate the effectiveness of our abstraction technique. The case study is an existing,
embedded, agent negotiation system where multiple, intelligent (software) agents
negotiate over the best use of available resources (radars) to track a series of targets
[5]. The targets and sensors can be simulated via the RadSim2 components or they can
be observed via real sensors and targets (infrastructure was built under the DARPA’s
ANTS project).

The system’s main components are Agent, RadSim2 (sensor and target simulator),
and a real-time Visualizer (note: we omit the real hardware for brevity). These com-
ponents communicate through a network where the Visualizer is on the receiving end
and the other components are transmitting. There is also communication going on
between Agents and RadSim2 that is omitted here. Figure 1 depicts a high-level class
structure of the Visualization component. The Visualizer has an input interface (class
Network Input) to handle data coming from the network (Agents and RadSim2) and it
has a storage facility for incoming data (class Data). A visualization component to
display the incoming data (class Visualization Display), data properties (class Prop-
erty Display), and the about box (classes About Display) make up the user interface.
Data can be stored in a file (class File Access).

deviceHistory
0..*

deviceState
0..*

About Display

show()

Network Input

File Access

Property Display
show()

Visualization Display
time
magnification

stop()
play()

display

0..*

0..1
display

1

Data
x
y
[speed]
[orientation]

RadSim2

network network

Agent
AgentAgent

0..1

Figure 1. Design Class Structure of Visualizer

The Agents, RadSim2, and Visualizer are implemented software components [5].
Figure 2 shows a refinement of Figure 1 depicting the real, low-level class structure of
the Visualization component (implementation-level implies that there is a one-to-one
mapping between the class structure and the actual code). A network is used to gather
data in near real-time speed (class DataInputStream). Gathered data may come from
one out of three different types of input devices: Sensor, Target, and Tracker. Sensors
track targets and trackers use sensor data to estimate target location. All input devices
have properties like a time stamp, a name, and a history of changes. Data received
from devices is usually information about activities or state changes. Each data is
stored in a new device instance and the class Scenario is responsible for keeping track
of the current state of all devices (sensors, targets, and trackers) as well as their entire
change history. The heart of the visualization component is the class TrackFrame
which processes and visualizes the data. TrackFrame also has an user interface with
elements like button, text area, or canvas to graphically display the devices and their
states (i.e., device properties are visualized via icons and other graphical clues). A
PopupDialog is used to display properties of a device.

The class structure in Figure 2 is already simplified since numerous methods and
attributes are omitted. Also, the RadSim2 and Agent components are only indicated
through single classes. Naturally, they are complex components themselves and con-
sist of numerous classes. We had to omit their details here to make the example more
concise. Nonetheless, the depicted, low-level class structure is not trivial despite its
relative small size (33 classes).

Runnable

Thread

Sensor

_x : float
_y : float
_orientation : float

Tracker

_x : float
_y : float
_direction : float
_speed : float

0..n
-inputSensors (Vector)

0..n

Target

_x : float
_y : float
_direction : float
_speed : float

Scenario

_beginTime : int = 0
_endTime : int = 0
_roomWidth : int = 0
_roomHeight : int = 0
_measurements : int = 0

findObjectAtLocation()
targetSetLocation()
targetSetDirection()
targetSetSpeed()
trackerNewProjection()

name : String

-currentSensors (Hashtable)
0..50

name : String

0..100000

time : int
name : String

-sensorHistory (Hashtable,Hashtable)

time : int
name : String

name : String -currentTrackers (Hashtable)

0..100000

name : String
0..50

time : int
name : String

-trackerHistory

time : int
name : String

0..100000

time : int
name : String

-targetHistory

time : int
name : String

name : String

-currentTargets
0..50

name : String

Socket

File

Dialog

show()

Frame

Panel PopupDialog

DataInputStream

Application

_port : int

run()
main()

AboutDialog

constructor()

-okButton

TrackDisplayCanvas

_magnification : int
_currentTime : int = 0

paint()

-trackPanel
1

-propertiesMenu

ClientHandler

_connected : boolean

close()
receiveData()
saveAs()

1
instream

1

1

Button

MenuBar

ScrollBar

ScrollPane

TextArea

TrackFrame

setTime()
stopPlaying()
backwardPlaying()
forwardPlaying()

-trackFrame

1
-aboutDialog

1

1
-trackCanvas

0..n

+clientHandlers (Vector)

-buttons
4

-menuBar

-timeScrollBar

-trackCanvasScrollPane

-detailsTextArea

TextField 4
-textFields

RadSim2 DataOutputStream

network

1

1

Instrumentation1 1

AgentAgentAgent
DataOutputStream

network

1

1

Instrumentation1
1

1
1

1

1

1

data storage

paint() setText()

setText()

Visualization Display

RadSim2

Agent

About Display

Data

Network Input

File Input

Property Display

Agree
Button

paint()

ChangeList
_changes: Vector

Device

_time : int
_name : String

+changes

Figure 2. Implementation Class Structure of Visualizer only (contours indicate
clusters of design classes; e.g., Agree Button and AboutDialog)

3 The Challenge of Abstraction

For software developers, there is a benefit in having both the high-level class struc-
ture (Figure 1) and the low-level class structure (Figure 2). The high-level class struc-
ture is easier to understand because it uses less model elements (8 classes versus 33)
and it may preserve high-level features (i.e., for model evolution as in [10]). The low-
level class structure is more complex but it is also more informative since it gives
clues on how to implement the system (i.e., code generation). Despite the desire to
keep both class structures for future use, one might lose them:
1) We usually do not know the “best” high-level abstractions in advance. An ab-

straction is a summary of low-level information and it is often dependent on par-
ticular points of views (suppress information irrelevant to a particular view).

2) We cannot presume that the high-level class structure remains consistent with the
low-level one over time if they are maintained separately. We have no factual
proof that Figure 1 is indeed an abstraction of Figure 2 making it less trustworthy.

Although it is highly beneficial to capture class structures at different levels of ab-
straction for later reference, potential inconsistencies between them negates their
benefits. Inconsistencies are caused primarily through evolutionary changes a system
may undergo. For instance, if an implementation is changed (i.e., because of a re-
quirements change) then the design may become inconsistent with the implementation
unless extra, manual effort is spent in correcting the inconsistency. Inconsistencies are
also caused through human error and become more likely the more complex a class
structure is. Maintaining abstractions of class structures manually is associated with
high effort and we found that the effort increases non-linearly with the size of the class
structure [4]. Here, automation can help in reducing the complexity of this problem.

The following discusses two complementary forms of abstractions. The first one,
called relational abstraction, translates sets of low-level relationships (with their
classes) into individual high-level relationships. The second one, called compositional
abstraction, translates other sets of low-level classes (with their relationships) to indi-
vidual, high-level classes. Human guidance is required to distinguish between compo-
sitional abstraction and relational abstraction. The translation is fully automated and
tool supported.

4 Transitive Reasoning

We developed a transitive reasoning technique in collaboration with Rational Soft-
ware [6]. The technique can take arbitrary complex class patterns to infer transitive
relationships between its classes. We define a transitive relationship to be the semantic
equivalent of a collection of normal relationships. For instance, if two normal calling
relationships exist (e.g., UML associations) so that A calls B and B calls C then, tran-
sitively, we can infer that A calls C. Transitive relationships are thus indirect relation-
ships between classes.

(1) A B C A C

(4) A CB CA

(5) B C CAA

B C CAA(28)

(36) A A CA A CCB CB

(50) C CAA B

(63) C CABA

(68) A B C A CC A CBA

(70) A A CCB CBA A C

CA B CA

(118)

(81)

A A CA CCB CBA(83)

C CABA

Input Pattern Output Pattern

Figure 3. Subset of Transitive Abstraction Rules [6]

A transitive relationship is always the result of a collection of direct relationships.
By composing the properties of a collection of direct relationships one can infer prop-
erties of the transitive relationship. Properties of relationships include direction of
call, type of relationship, or cardinality of association ends. If, say, two relationships
have the same type and the same calling direction then transitively the two relation-
ships can be composed into a single one of the same type and direction (see Rule 70 in
Figure 3). Transitive relationships are thus a form of abstraction where the transitive
relationship is semantically equivalent or weaker (less constrained) than the direct
relationships it composes. Figure 3 gives an excerpt of about 121 transitive relation-
ships defined in [3]. For instance, rule 1 states that if A inherits from B and B inherits
from C (input pattern) then, transitively, A inherits from C (output pattern). Or Rule
118 states that if C depends on B, A is a part of B (diamond head), and A is called by
B (arrowhead) then, transitively, C depends on A.

The given transitive abstraction rules are simple in nature. Most rules describe a
collection of two input relationships that can be composed into a single output rela-
tionship. What makes this abstraction technique powerful is the large number of sim-
ple rules (121 rules for three types of class relationships and various properties).
Given the simplicity of the rules, the abstraction algorithm is very fast (see empirical
studies in [3]); however, at the expense of precision. UML relationship semantics are
not well-treated in the current UML specification which may lead to uncertainties
during transitive reasoning (e.g., A calling B and B calling C may not imply A calling
C always; see validation in Section 7).

As input, the algorithm takes an arbitrary complex class structure and a list of ‘im-
portant classes’ (the cluster). The list of important classes is needed to distinguish
between classes that may be abstracted and classes that may not. In Figure 3 the
classes A and C are important and the class B is not important as it gets replaced (to-
gether with its relationships) by a higher-level relationship. A human has to make the
decision on what classes are important as it depends on the circumstances and usage
of the higher-level output.

TrackFrame TrackDisplayCanvas1 Scenario Tracker
0..100000

0..50

0..100000

1

TrackFrame Scenario Tracker

0..50

TrackFrame Tracker

11

11

1

1

Rule 68

Rule 118
0..100000

0..50

Figure 4. Transitive Relationship between Classes

Figure 4 shows the use of transitive (relational) reasoning in understanding the rela-
tionship between the user-defined, important, low-level classes TrackFrame and
Tracker (from Figure 2). Although the two classes are not directly related to one an-
other, a transitive relationship can be derived by eliminating the helper classes Track-
DisplayCanvas and Scenario. Figure 4 shows that the application of Rule 68 elimi-
nates the class TrackDisplayCanvas whereas the subsequent application of Rule 118
eliminates the class Scenario. This results in two high-level relationships between the

two important classes which, together, are semantically equivalent to the replaced
classes and all their relationships.

In summary, transitive reasoning merges low-level classes and relationships into
higher-level relationships. This form of abstraction is necessary in cases where lower-
level classes are the result of refining a relationship. For instance, the low-level class
Scenario in above example is an index for visualization data. It does not actually con-
tain any data. It therefore does not belong conceptually to the high-level class Data
and neither does it belong to the high-level class TraceFrame since it does not provide
user interface services. On a high-level it thus belongs to the relationship that binds
the classes Visualization Display and Data.

5 Compositional Abstraction

While transitive reasoning is important in abstracting away low-level classes that
belong conceptually to relationships, there are still other classes that are low-level but
belong conceptually to high-level classes and not relationships. For example, the low-
level classes Device, Tracker, Target, Sensor, and ChangeList capture data. They all
belong conceptually to the high-level class Data. It would be incorrect to apply some
form of transitive reasoning here. Compositional Abstraction, discussed in this sec-
tion, merges low-level classes that belong to single high-level classes.

The shading used in Figure 2 indicates clusters of classes that a user defined to be
conceptually related. Compositional abstraction is applicable to each such cluster.
Figure 5 demonstrates this on the cluster containing the low-level classes Agree But-
ton and AboutDialog (the about dialog displays a copyright that has to be acknowl-
edged through a special agree button). Since the two low-level classes were defined by
a user to belong conceptually to the single high-level class About Display (see name
given to cluster in Figure 2), a new high-level class About Display can be created
(note that we do not alter any existing class structures during abstraction but instead
generate a new, separate class structure; see also Figure 5 bottom).

AboutDialog

constructor()

-okButton

-aboutDialog

11

TrackFrame

setTime()
stopPlaying()
backwardPlaying()
forwardPlaying()

Agree Button

paint()

constructor()
show()

-aboutDialog

11

Abstraction

About Display Visualizer Display

?

Dialog

show()

Figure 5. Scenario for Compositional Abstraction

Creating higher-level classes to represent a cluster of lower-level classes is an intui-
tive and straightforward activity since the higher-level elements can be seen as place-

holders for the lower-level ones (refinement is often the exact reverse of this activity
where a single high-level element is broken up into several low-level ones). However,
a class is much more than a box. A class also captures structure through class attrib-
utes and methods and it captures behavior through relationships.

services of class = structure and behavior of class
For a cluster of low-level classes to consistently implement a single high-level

class, both have to exhibit the same structure and behavior. The structure and behavior
of a high-level class is obvious since such a high-level class clearly defines its attrib-
utes, methods, and relationships. On the other hand, a cluster of low-level classes
belonging to a single high-level class distributes its structure and behavior among the
many lower-level classes. To complicate matters, it is generally incorrect to assume
that the sum of the services of low-level classes is equivalent to the services of the
high-level class. The rationale:
• a low-level class may offer partial, low-level services
• a low-level class may offer generic, rich services that are partially used

Both cases above imply that individual low-level classes may provide services that
are not being offered by its high-level abstraction. As a consequence:

services of high-level class ⊆ sum of the services of lower-level classes
Unfortunately, it is not possible to automatically determine which services of low-

level classes are low-level and which ones are high-level. However through another
observation we can provide a more meaningful approximation.

a low-level class cannot provide high-level services if it is not accessible to
classes from other clusters

A class is accessible by another class if a direct or indirect (transitive) calling depend-
ency exists (expressed through relationships). If a low-level class is accessed by an-
other class then its services are being used. If that low-level class is accessed by low-
level classes of the same cluster only then its services are internal within that cluster.
Contrary, if that low-level class is accessed by low-level classes of other clusters then
its services are publicly available. Only public services can be high-level services.
isEntryPoint(e:Class) ↔ ∃ c ∈ classes, c ∈ clusters.classes,

e ∈ clusters.classes, c.cluster ≠ e.cluster, existsDirectRelations(e,c) or existsTran-
sitiveRelations(e,c)

The above definition states that a given class is a public entry point if it is part of a
cluster and there exists another class part of another cluster that has a relationship to
the given class.

Figure 5 (top) continues on the previous example. It also depicts the only two
neighboring low-level classes that directly interact with the About Display cluster.
One of the neighboring classes is not part of any cluster (Dialog) whereas the other
neighboring class is part of the Visualizer Display cluster (TrackFrame). Abstracting
the About Display cluster combines the two low-level classes Agree Button and
AboutDialog but it does not combine their services. The low-level class Agree Button
is a support class in that only About Dialog can interact with it. Neither one of the
other neighboring classes Dialog or TrackFrame can access it without going through
AboutDialog. This indicates that services defined in Agree Button are inaccessible to
classes outside the cluster and need not be abstracted. The opposite is true for the
class AboutDialog. It is directly accessible by a class of another cluster which implies

that its services are publicly available (isEntryPoint is true). Services of AboutDialog
must be abstracted which also includes the inherited services of Dialog.

The definition of the entry point has another stipulation in that either direct rela-
tions (existsDirectRelations(e,c)) or transitive relations (existsTransitiveRela-
tions(e,c)) are used to determine entry points. Why is a distinction being made here?
The relationship between the cluster About Display and Visualizer Display is a direct
one since the classes of both clusters have a direct relationship defined (aggregation
between AboutDialog and TrackFrame):
existsDirectRelations(a,b) ↔

∃r ∈ relations, (r.origin=a and r.destination=b) or (r.destination=a and r.origin=b)
This definition states that there exists a direct relationship between two classes if a

relationship exists that has both classes as origin or destination. In the low-level class
structure in Figure 2 there are many direct relationships (any arrow between classes)
but there is only one direct relationship between classes belonging to different clus-
ters. Note that we are not interested in direct relationships between classes of the same
cluster (e.g., the relationship between Application and TrackFrame is not relevant).

Runnable

DataInputStream

Application
_port : int

run()
main()

ClientHandler
_connected : boolean

close()
receiveData()
saveAs()

MenuBarScrollPane

TrackFrame

setTime()
stopPlaying()
backwardPlaying()
forwardPlaying()

TextField

instream
1

+clientHandlers (Vector)

0..n

-menuBar
-trackCanvasScrollPane

-trackFrame

0..n

-textFields
44

Visualizer Display

setTime()
stopPlaying()
backwardPlaying()
forwardPlaying()

Network Input

0..n

Abstraction

Thread

Figure 6. Transitive Relationship between Classes without direct Relationships

The lack of direct relationships between classes of different clusters does not imply
that those classes cannot access one another. As an example, consider Figure 6 with
the two clusters Visualizer Display and Network Input. Both clusters do not directly
relate to one another because the low-level class ClientHandler separates them. Still, a
calling dependency exists because class TrackFrame (part of cluster Visualizer Dis-
play) can call methods of class ClientHandler (implied through arrowhead in aggrega-
tion relationship) and those methods, in turn, can call methods of class DataInput-
Stream (part of cluster Network Input). This implies transitively that class Track-
Frame can call class DataInputStream via the ‘helper class’ ClientHandler. This tran-
sitive relationship defines TrackFrame and DataInputStream as entry points for their
respective clusters.
existsTransitiveRelations (a,b) ↔ deriveTransitiveRelations(a,b) ≠ ∅

Since clusters are user-defined sets of low-level classes that conceptually belong to
single, high-level classes, it follows that all remaining classes not defined in clusters
belong to single, high-level relationships. Transitive reasoning must only use classes
not part of any cluster since the others already belong to higher-level elements (i.e.,
higher-level classes). It follows that there is no transitive relationship between Appli-
cation and DataInputStream through the ‘helper classes’ TrackFrame and ClientHan-

dler. Furthermore, there are also no transitive relations going through Runnable or
Thread because no transitive abstraction pattern applies. For a proof on these matters
please refer to [4].

The previous two examples of abstracting clusters were cases of two or more
classes per cluster with single public classes. Abstracting those clusters is relatively
simple since the services of the high-level classes are essentially the services of the
entry point classes. Figure 7 discusses an example of a cluster with multiple entry
points. It shows the previously mentioned cluster Data and its five implementation
classes Target, Tracker, Sensor, ChangeList and Device. Using the definition for
isEntryPoint one can determine that Target, Tracker, and Sensor are entry points but
Device and ChangeList are inaccessible (that there are transitive dependency relation-
ships between low-level class TrackFrame and the three entry point classes).

Device
_time : int
_name : String

Sensor
_x : float
_y : float
_orientation : float

Tracker
_x : float
_y : float
_direction : float
_speed : float

-inputSensors (Vector)
0..n

Target
_x : float
_y : float
_direction : float
_speed : float

_time : int
_name : String
_x : float
_y : float
[_direction : float]
[_speed : float]
[_orientation : float]

Data

0..100000
0..100000

0..100000
0..500..500..50

Visualizer Display

0..1000000..50

+changes ChangeList

_changes : Vector

changes : ChangeList

TrackFrame

Figure 7. Compositional Abstraction of Multiple Entry Point Classes

Abstracting the Data cluster requires the creation of a new class called Data with
the combined services of the entry point classes. Data must have the attributes ‘x’ and
‘y’ because TrackFrame can access those attributes regardless what entry point class
is chosen. Note that each relationship, in principle, denotes a distinct access to an
entry point class. Since some attributes are not associated with all entry point classes
(e.g., orientation is only part of Sensor) it follows that not all attributes of all entry
point classes are accessible through all relationships. For abstraction this implies that
some attributes are mandatory and other attributes are optional. Mandatory attributes
are the intersection of all attributes in entry point classes. The three entry points
Tracker, Target, and Sensor all have in common the attributes ‘x’ and ‘y’ (mandatory
attributes). Since the three entry points also inherit the attributes ‘time’ and ‘name’
from Device those attributes also become mandatory (recall a similar exception in-
volving inheritance relationships in Figure 5). Optional attributes are the union of all
attributes in entry point classes (whether inherited or not) minus mandatory attributes.
For example, an instance of Data might have attributes like ‘direction’ or ‘orientation’
but likely not both. Optional attributes are denoted with rectangular brackets (i.e.,
[direction : float]).

Methods can be treated like attributes. Mandatory methods are methods used in all
entry point classes whereas optional methods are all methods used in all entry point
classes minus mandatory ones. Relationships will be discussed later.

for all cl ∈ clusters
classesInCluster = classes.collect(c : class | c.cluster = cl)
entryPoints = classesInCluster.collect(c | isEntryPoint(c))
allMethods = ∅
for all e ∈ entryPoints

allMethods = allMethods +
e.methods.collect(m | m. isPublic=true) +
e.parents.methods.collect(m | m.isPublic=true)

mandatoryMethods = allMethods
for all e ∈ entryPoints

mandatoryMethods = mandatoryMethods.
intersection(e.methods+e.parents.methods)

optionalMethods = allMethods - mandatoryMethods
allAttributes = ∅
for all e ∈ entryPoints

allAttributes = allAttributes +
e.attributes.collect(a | a.isPublic=true)
e.parents.attributes.collect(a | a.isPublic=true)

mandatoryAttributes = allAttributes
for all e ∈ entryPoints

mandatoryAttributes = mandatoryAttributes.
intersection(e.attributes+e.parents.attributes)

optionalAttributes = allAttributes – mandatoryAttributes
cl.abstraction = new Class(name = cluster.name)
cl. abstraction. mandatoryMethods = mandatoryMethods
cl. abstraction. optionalMethods = optionalMethods
cl. abstraction.mandatoryAttributes = mandatoryAttributs
cl. abstraction.optionalAttributes = optionalAttributes

end //for all
Figure 8. Compositional Abstraction Algorithm

Figure 8 summarizes the algorithm for compositional abstraction as was discussed
in this section. For each cluster, a new, high-level class is created with the name of the
cluster and the mandatory and optional services derived out of entry point classes.
Entry point classes are identified using the isEntryPoint definition we gave earlier.
The command ‘collect’ traverses a list of classes part of the same cluster in
‘classesInCluster’ and returns only those for which the given condition holds (e.g.,
isEntryPoint is true). The variable ‘allMethods’ captures the union of all public meth-
ods in entry points (note: only public methods are accessible from the outside). The
variable ‘mandatoryMethods’ is the intersection of all methods in entry points and the
variable ‘optionalMethods’ is the union of all methods in entry points minus manda-
tory methods. Mandatory and optional attributes are computed in the same fashion.

6 Relational Reasoning

Relational reasoning extends compositional reasoning in that relationships may
play two distinct roles during abstraction: Relationships may be either associated with

abstract classes or with abstract relationships. An obvious case is the relationship
between Scenario and TrackDisplayCanvas which is used for transitive reasoning and,
consequently, is associated with an abstract relationship (see Figure 4). A counterex-
amples is the relationship between Device and ChangeList in Figure 7 which is associ-
ated with clusters and consequently with abstract classes.

abstractableRelations = ∅
for all cluster∈ clusters

for allc1∈ cluster.classes
for allc2∈ classes, c2.cluster≠ ∅, c2.cluster≠ cluster

abstractableRelations = abstractableRelations +
relations(c1, c2) + transitiveRelations(c1, c2)

end //for all
end //for all
entryPoints = cluster.classes.collect(c | isEntryPoint(c))
relationRelevant = abstractableRelations.refinements
classRelevant = entryPoints. parents.outgoingRelations +

entryPoints.outgoingRelations– relationRelevant
allRelations = ∅
for alle ∈ entryPoints

allRelations = allRelations +
e. outgoingRelations + e.parents.outgoingRelations

mandatoryRelations= allRelations
for alle ∈ entryPoints

mandatoryRelations= mandatoryRelations. intersection(e. outgoingRelations +
e.parents.outgoingRelations)

optionalRelations =allRelations- mandatoryRelations
cluster.abstraction.mandatoryAttributes = cluster.abstraction.mandatoryAttributes +

convertToAttributes(mandatoryRelations.collect(r:Association | r.connection(r.destination).isPublic)
cluster.abstraction.optionalAttributes = cluster.abstraction.optionalAttributes +

convertToAttributes(optionalRelations.collect(r:Association | r.connection(r.destination).isPublic)
end //for all
for all r ∈ abstractableRelations

abstraction = new Relation(properties like r)
abstraction.origin = r.origin.cluster.abstraction
abstraction.destination = r.destination.cluster.abstraction

end //for all

Figure 9. Relational Abstraction Algorithm

Relationships that are associated with abstract relationships are only needed to de-
rive transitive relationships. Relationships that are associated with abstract classes
(clusters) might be used to derive abstract attributes. UML association and aggrega-
tion relationships define attributes implicitly. For instance, the relationship from De-
vice to ChangeList is an aggregation (a variation of an association). This aggregation
uses the role name “+changes” to reference instances of ChangeList. The role name is
essentially a unique identifier within Device which corresponds semantically to a
global variable (an attribute). An association or aggregation thus may cause an ab-
stract attribute if it is originating from an entry point class and if it is public. In Figure
7, the aggregation “changes” causes an attribute in Data because it satisfies both
above conditions: (1) it is accessible because an entry point inherits it and (2) it is
public as indicated through the plus symbol in front of the name (plus is public and
minus is private). Other relationships like the one between TrackFrame and MenuBar
do not become attributes because they are either inaccessible or private. Using the

name of the association as the attribute name and the name of the destination class as
the attribute type converts an association into an attribute.
convertToAttribute (a:Association) ↔

new Attribute(name = a.name, type=a.destination.name)
Figure 9 gives the algorithm for relational reasoning using the transitive relation-

ship technique discussed before. First, the algorithm locates all direct or transitive
relationships between clusters (relationships between classes outside clusters are not
of interest here) and stores them into the variable ‘abstractableRelations.’ Next, the
entry points are calculated analogous to Figure 8. Relationships associated with ab-
stract relations are computed and stored in ‘relationRelevant.’ Then relationships
associated with classes are computed by looking at outgoing relationships of entry
points or their parents minus the ones that are associated with relationships. If a rela-
tion is accessible by all entry points then that relation might become a mandatory
attribute; otherwise it might become an optional attribute (analogous to Figure 8).
Whether or not a relationship becomes an attribute is determined next by converting
only those relationships that are associations (note: aggregations are also associations)
and that have a publicly accessible destination. In a last step, all abstractable relations
are made into abstract relations by taking over their properties and defining their ab-
stract origins and destinations which are the abstract classes created in Figure 8.

Figure 10 shows the result of abstracting the implementation class in Figure 2. In
comparison with the existing design class structure in Figure 1, the abstraction is in-
deed similar but has a few differences. These differences are possible inconsistencies.

Data
_time : int
_name : String
_x : float
_y : float
[_direction : float]
[_speed : float]
[_orientation : float]
changes : ChangeList

About Display

constructor()
show()

1
-aboutDialog

Property Display

1

050

0
100000

File Input

RadSim2
Agent

1

1

AgentAgent

0..*

0..n

Network InputVisualization Display

setTime()
stopPlaying()
backwardPlaying()
forwardPlaying()

1

1

1
1

Figure 10. Abstracted Implementation Class Structure

7 Validation

Abstraction aims at reversing the refinement process that classes undergo. The
process of abstraction is analogous to a magnification glass with which one may
‘zoom out’ any degree to inspect a complex class structure. User input is required in
defining clusters of related, low-level classes. Finding clusters in a complex class
structure varies in difficulty. The main problem of finding clusters is finding their
precise boundaries. The full automation provided by our approach has the advantage
that cluster boundaries may be explored iteratively through trial-and-error.

Our approach is based on transitive reasoning. This has the advantage that certain
properties can be guaranteed, Most importantly, our approach to transitive reasoning
is conservative in identifying all possible transitive relationships [4]. However because
of this conservative nature, it may also report additional, false transitive relationships.
Extensive empirical studies [4] have shown this error to be little (<5% of all reported
results).

As a result, the identification of entry points is correct if it is based on direct rela-
tionships but potentially incorrect if it is based on transitive relationships. However,
due to the conservative nature of transitive reasoning it is guaranteed that all entry
points are identified with a low likelihood of additional, wrong ones (<5%).

In summary, our approach is guaranteed to identify all high-level classes, relation-
ships, and class services (i.e., attributes and methods). False positives may exist which
implies that the true abstraction result is a subset of the reported abstraction result.
Human intervention is required to determine this subset which requires investigating
the results of transitive reasoning and the services of entry point classes.

8 Related Work

Many techniques have been proposed to aid the understanding of complex class
structures. There are reading techniques like inspection [7] that use group effort to
cope with complexity. Most of these techniques are manual and involve high effort
and manpower. Using multiple views is an effective form of separating concerns [14].
Class structures can be subdivided into viewpoints [9] where partial and potentially
overlapping portions of the structure are depicted. The sum of all diagrams is the
complete class structure itself. Multiple views make use of the fact that one does not
need access to all classes to understand a particular concern. Still, multiple views
cannot avoid the problem of class replacement and substitution (fragmentation dis-
cussed earlier) and although multiple views can make classes belonging to individual
concerns more understandable, they generally cannot be used to project a high-level,
simpler abstraction of a complex class structure.

Slicing [13] is another technique to cope with software complexity. Although it is
primarily used on source code, one could imagine its use on design languages like
class diagrams. Slicing uses some property or rule and investigates how such a rule
might become valid. For instance, a ‘slice’ could display all possible design elements
that might affect a variable directly or indirectly. Slicing, like the separation of con-
cerns, can be very effective in understanding individual concerns within complex class
structures but it does not improve the overall understanding (abstraction) of a complex
system.

Techniques have been proposed to formalize UML class diagrams [2]. Those tech-
niques are important to improve the precision and meaning of model elements like
classes and relationships. Although, a more precise definition of class diagrams can
significantly aid its understanding and use (i.e., code generation, verification, etc.) it
itself does not provide abstraction. Still, a more precise definition may make it easier
to devise more reliable abstraction techniques.

We see the key to class abstraction in automated transformation. For example, the
approach proposed by Fahmy and Holt [8] provides a set of transformation rules that
can be applied onto class-like structures. Indeed there is some similarity between some
of their rules and our abstraction technique (e.g., lifting). The main problems we see
are that their rules are too few in number for comprehensive abstraction and they ex-
pect the rules to be applied manually. Racz and Koskimies [11] devised a technique to
evaluate transitive relationships (indirect relationships spanning multiple classes in
class structures). Their technique is very similar to our approach to transitive reason-
ing but their technique is only semi-automated. Also, as was shown in this paper, un-
derstanding transitive relationships between classes only provides limited abstraction
and is not sufficient to derive abstract properties of class structures in general.

Lieberherr et al. [10] defined class transformation methods to capture evolution.
They argue that class evolution is inevitable and result in new class models that, pref-
erably, should be as consistent as possible with earlier versions. Although, one could
argue that evolution is a form of refinement, we take a narrower stance. For us, re-
finement has to maintain consistency within a given model. Their work thus addresses
evolutionary “refinement” and “consistency issues” that are considered outside the
scope of this paper. Nonetheless, one can envision a strong need for our approach to
be combined with theirs so that model refinement and abstraction can be comple-
mented with model evolution.

9 Conclusions

Understanding a complex class structure does not necessarily require the under-
standing of every single class. Clusters of classes like buttons, windows, text fields, or
scroll bars are integral parts of user interfaces and in some cases it is not necessary to
know their details. This paper introduced a technique on how to abstract low-level
classes into higher-level classes using these kinds of clusters to direct the abstraction.
The technique composes classes within clusters into abstract classes; and classes out-
side clusters into abstract relationships. As a result low-level properties can be re-
interpreted as higher-level properties. Our approach is a lightweight, easy-to-use, and
iterative way of simplifying the complexity of class structures. Abstraction results can
improve the understanding of a model or ease the navigation between its elements. We
also used the approach for consistency checking and reverse engineering.

Our approach was validated on numerous real applications. We found that our ap-
proach produces useable abstractions very fast. The quality of results is determined by
the quality (correctness) of the clusters and the approach tends to error in favor of
showing relationship in case of doubt. We observed that this only becomes a problem
if the degree of abstraction is very high (1:10 abstraction ratio or higher). Given the
iterative nature of our technique, we also found it easy to reason about correct cluster
boundaries using a trial-and-error-like approach. If an abstraction does not match a
mental model then a simple adjustment of the cluster boundary may resolve the prob-
lem. If the problem persists then the difference may indicate an inconsistency.

It is future work to improve the presented abstraction technique by integrating it
with other (UML) diagrams. Since other diagrams may embody additional modeling
data, it may be used to make abstractions stronger and more reliable. It is also future
work to investigate how the semantics of a relationship is affected if it is composed of
low-level classes.

Acknowledgements
We wish to thank Philippe Kruchten, Barry Boehm, Cristina Gacek, Paul Grunbacher, Ne-

nad Medvidovic, DaveWile, and the anonymous reviewers for insightful comments. This work
was support by DARPA through contracts F30602-00-C-0218 and F30602-99-1-0524.

References
[1] Boehm B., Egyed A., Kwan J., and Madachy R.: Using the WinWin Spiral Model: A

Case Study. IEEE Computer, 1998, 33-44.
[2] Bourdeau R. H. and Cheng B. H. C.: A Formal Semantics for Object Model Diagrams.

IEEE Transactions on Software Engineering (TSE), 1995.
[3] Egyed, A.: "Semantic Abstraction Rules for Class Diagrams," Proceedings of the 15th

IEEE International Conference of Automated Software Engineering (ASE), Grenoble,
France, September 2000.

[4] Egyed A.: Automated Abstraction of Class Diagrams. ACM Transaction on Software
Engineering and Methodology (TOSEM) 11(4), 2002, 449-491.

[5] Egyed, A., Horling, B., Becker, R., Robert Balzer: Visualization and Debugging Tools, In
Distributed Sensor Networks: A multiagent perspective, edited by Victor Lesser, Charles
L. Ortiz Jr., and Milind Tambe. Boston, Kluwer Academic Publishers, 2003.

[6] Egyed, A. and Kruchten, P.: "Rose/Architect: A Tool to Visualize Architecture," Proceed-
ings of the 32nd Hawaii International Conference on System Sciences (HICSS), January
1999.

[7] Fagan M. E.: Advances in software inspections. IEEE Transactions on Software Engi-
neering (TSE) 12(7), 1986, 744-751.

[8] Fahmy, H. and Holt, R. C.: "Using Graph Rewriting to Specify Software Architectural
Transformations," Proceedings of the 15th IEEE International Conference on Automated
Software Engineering (ASE), Grenoble, France, September 2000, pp.187-196.

[9] Finkelstein A., Kramer J., Nuseibeh B., Finkelstein L., and Goedicke M.: Viewpoints: A
Framework for Integrating Multiple Perspectives in System Development. International
Journal on Software Engineering and Knowledge Engineering, 1991, 31-58.

[10] Lieberherr K. J., Hursch W. L., and Xiao C.: Object-Extending Class Transformations.
Journal Formal Aspects of Computing 6(4), 1994, 391-416.

[11] Racz, F. D. and Koskimies, K.: "Tool-Supported Compression of UML Class Diagrams,"
Proceedings of the 2nd International Conference on the Unified Modeling Language
(UML), Fort Collins, CO, October 1999, pp.172-187.

[12] Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference Man-
ual. Addison Wesley, 1999.

[13] Snelting G. and Tip F.: Understanding Class Hierarchies Using Concept Analysis. ACM
Transactions on Programming Languages and Systems, 2000, 540-582.

[14] Tarr, P., Osher, H., Harrison, W., and Sutton, S. M. Jr.: "N Degrees of Separation: Multi-
Dimensional Separation of Concerns," Proceedings of the 21st International Conference
on Software Engineering (ICSE 21), May 1999, pp.107-119.

