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Abstract. Class diagrams are among the most widely used object-oriented de-
sign techniques. They are effective in modeling the structure of software sys-
tems at any stages of the software life cycle. Still, class diagrams can become as 
complex and overwhelming as the software systems they describe. This paper 
describes a technique for abstracting lower-level class structures into higher-
level ones by ‘collapsing’ lower-level class patterns into single, higher-level 
classes and relationships. This paper is an extension to an existing technique 
that re-interprets the transitive meaning of lower-level classes into higher-level 
relationships (relational reasoning). The existing technique is briefly summa-
rized. The extensions proposed in this paper are two-fold: This paper augments 
the set of abstraction rules to also collapse class patterns into higher-level 
classes (compositional reasoning). While this augmentation is simple and in 
sync with traditional  views of refinement and abstraction, it has drawbacks in 
defining class features like methods and attributes. This paper thus also demon-
strates how to filter low-level class features during abstraction. Our approach 
requires some human guidance in deciding when to use compositional or rela-
tional reasoning but is otherwise fully automated. Our approach is conservative 
in its results guaranteeing completeness but at the expense of some false posi-
tives (i.e., the filter errs in favor of not eliminating in case of doubt). The pro-
posed technique is applicable to model understanding, inconsistency detection, 
and reverse engineering. 

1   Introduction 

Software systems are often compositions of high-level components. During the design, 
those high-level components are gradually refined into lower-level components. In 
most cases, a refinement step implies an increase in the number of model elements. 
This benefits the gradual exploration of a problem space that does not require com-
plete, initial knowledge about a software system. Instead knowledge is added incre-
mentally in response to decisions made along the way (i.e., spiral model [1]). 

One of the most widely used design languages is the class diagram [12] because it 
can model a software system throughout its life cycle. Early on, classes and relation-
ships can describe high-level components and their interactions. Refining classes and 
relationships gradually extends class structures. Over time, class structures may reach 
a refinement level that allows direct code generation. 
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Nonetheless, there are problems associated with the use of class diagrams. The re-
finement process is a complicated task and becomes increasingly difficult with the size 
of the design. This cannot be avoided since refinement steps tend to increase the num-
ber of elements in the class structure. As a consequence, understanding a class struc-
ture and reasoning in its presence becomes more complex over time – naturally in 
response to the larger size but also because of fragmentation. Fragmentation occurs 
because refinement is not limited to the addition of new elements but it may also re-
place or substitute existing elements. For instance, a single design element may be 
replaced by several new design elements to more precisely describe its meaning. As a 
result, single higher-level elements can only be recognized within clusters of low-level 
elements. This loss of simplicity is a severe problem for large-scale software devel-
opment because developers lose oversight more easily leading to confusion, ineffi-
ciency, and error. 

It is sometimes attempted to maintain separate class structures that describe the 
same system at different levels of detail. This solution is flawed due to maintainability 
concerns (i.e., inconsistencies) since evolutionary changes have to be performed on all 
class structures separately. This is a time consuming and costly task [4], and it is 
flawed since human error may result in inconsistent updates. Developers thus cannot 
rely on separately maintained class structures.  

Our approach extends an existing technique [4] to avoid the above maintenance 
problem. It does so by translating (abstracting) lower-level class structures into 
higher-level ones on demand. It requires some manual guidance in defining the cluster 
of related, lower-level model elements. A combination of reasoning techniques is then 
used to analyzes the low-level class structure to translate its elements into a higher-
level class structure according to the clusters defined. The result is a new, simpler, 
higher level class structure that is consistent with the lower-level class structure.  

The approach can be used to periodically ‘zoom-out’ of arbitrary complex class 
diagrams to investigate and understand their bigger picture. It is lightweight and com-
putationally not very expensive. It is oblivious to evolutionary changes since new 
abstractions can be generated on demand and discarded thereafter. Roughly a dozen 
complex, real-world class diagrams were used to evaluate its usefulness. The result of 
this evaluation showed that generated abstraction results were reliable in most cases 
although errors did occur. Manual inspection and intervention is thus required to make 
abstraction results more reliable (i.e., semi automation). 

2   Case Study 

This paper uses a case study to motivate the need for abstraction and to demon-
strate the effectiveness of our abstraction technique. The case study is an existing, 
embedded, agent negotiation system where multiple, intelligent (software) agents 
negotiate over the best use of available resources (radars) to track a series of targets 
[5]. The targets and sensors can be simulated via the RadSim2 components or they can 
be observed via real sensors and targets (infrastructure was built under the DARPA’s 
ANTS project).  



The system’s main components are Agent, RadSim2 (sensor and target simulator), 
and a real-time Visualizer (note: we omit the real hardware for brevity). These com-
ponents communicate through a network where the Visualizer is on the receiving end 
and the other components are transmitting. There is also communication going on 
between Agents and RadSim2 that is omitted here. Figure 1 depicts a high-level class 
structure of the Visualization component. The Visualizer has an input interface (class 
Network Input) to handle data coming from the network (Agents and RadSim2) and it 
has a storage facility for incoming data (class Data). A visualization component to 
display the incoming data (class Visualization Display), data properties (class Prop-
erty Display), and the about box (classes About Display) make up the user interface. 
Data can be stored in a file (class File Access). 
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Figure 1. Design Class Structure of Visualizer 

The Agents, RadSim2, and Visualizer are implemented software components [5]. 
Figure 2 shows a refinement of Figure 1 depicting the real, low-level class structure of 
the Visualization component (implementation-level implies that there is a one-to-one 
mapping between the class structure and the actual code). A network is used to gather 
data in near real-time speed (class DataInputStream). Gathered data may come from 
one out of three different types of input devices: Sensor, Target, and Tracker. Sensors 
track targets and trackers use sensor data to estimate target location. All input devices 
have properties like a time stamp, a name, and a history of changes. Data received 
from devices is usually information about activities or state changes. Each data is 
stored in a new device instance and the class Scenario is responsible for keeping track 
of the current state of all devices (sensors, targets, and trackers) as well as their entire 
change history. The heart of the visualization component is the class TrackFrame 
which processes and visualizes the data. TrackFrame also has an user interface with 
elements like button, text area, or canvas to graphically display the devices and their 
states (i.e., device properties are visualized via icons and other graphical clues). A 
PopupDialog is used to display properties of a device.  

The class structure in Figure 2 is already simplified since numerous methods and 
attributes are omitted. Also, the RadSim2 and Agent components are only indicated 
through single classes. Naturally, they are complex components themselves and con-
sist of numerous classes. We had to omit their details here to make the example more 
concise. Nonetheless, the depicted, low-level class structure is not trivial despite its 
relative small size (33 classes).  
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Figure 2. Implementation Class Structure of Visualizer only (contours indicate 
clusters of design classes; e.g., Agree Button and AboutDialog) 

3   The Challenge of Abstraction 

For software developers, there is a benefit in having both the high-level class struc-
ture (Figure 1) and the low-level class structure (Figure 2). The high-level class struc-
ture is easier to understand because it uses less model elements (8 classes versus 33) 
and it may preserve high-level features (i.e., for model evolution as in [10]). The low-
level class structure is more complex but it is also more informative since it gives 
clues on how to implement the system (i.e., code generation). Despite the desire to 
keep both class structures for future use, one might lose them: 
1) We usually do not know the “best” high-level abstractions in advance. An ab-

straction is a summary of low-level information and it is often dependent on par-
ticular points of views (suppress information irrelevant to a particular view). 

2) We cannot presume that the high-level class structure remains consistent with the 
low-level one over  time if they are maintained separately. We have no factual 
proof that Figure 1 is indeed an abstraction of Figure 2 making it less trustworthy. 



Although it is highly beneficial to capture class structures at different levels of ab-
straction for later reference, potential inconsistencies between them negates their 
benefits. Inconsistencies are caused primarily through evolutionary changes a system 
may undergo. For instance, if an implementation is changed (i.e., because of a re-
quirements change) then the design may become inconsistent with the implementation 
unless extra, manual effort is spent in correcting the inconsistency. Inconsistencies are 
also caused through human error and become more likely the more complex a class 
structure is. Maintaining abstractions of class structures manually is associated with 
high effort and we found that the effort increases non-linearly with the size of the class 
structure [4]. Here, automation can help in reducing the complexity of this problem.  

The following discusses two complementary forms of abstractions. The first one, 
called relational abstraction, translates sets of low-level relationships (with their 
classes) into individual high-level relationships. The second one, called compositional 
abstraction, translates other sets of low-level classes (with their relationships) to indi-
vidual, high-level classes. Human guidance is required to distinguish between compo-
sitional abstraction and relational abstraction. The translation is fully automated and 
tool supported. 

4   Transitive Reasoning 

We developed a transitive reasoning technique in collaboration with Rational Soft-
ware [6]. The technique can take arbitrary complex class patterns to infer transitive 
relationships between its classes. We define a transitive relationship to be the semantic 
equivalent of a collection of normal relationships. For instance, if two normal calling 
relationships exist (e.g., UML associations) so that A calls B and B calls C then, tran-
sitively, we can infer that A calls C. Transitive relationships are thus indirect relation-
ships between classes.  
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Figure 3. Subset of Transitive Abstraction Rules [6] 



A transitive relationship is always the result of a collection of direct relationships. 
By composing the properties of a collection of direct relationships one can infer prop-
erties of the transitive relationship. Properties of relationships include direction of 
call, type of relationship, or cardinality of association ends. If, say, two relationships 
have the same type and the same calling direction then transitively the two relation-
ships can be composed into a single one of the same type and direction (see Rule 70 in 
Figure 3). Transitive relationships are thus a form of abstraction where the transitive 
relationship is semantically equivalent or weaker (less constrained) than the direct 
relationships it composes. Figure 3 gives an excerpt of about 121 transitive relation-
ships defined in [3]. For instance, rule 1 states that if A inherits from B and B inherits 
from C (input pattern) then, transitively, A inherits from C (output pattern). Or Rule 
118 states that if C depends on B, A is a part of B (diamond head), and A is called by 
B (arrowhead) then, transitively, C depends on A. 

The given transitive abstraction rules are simple in nature. Most rules describe a 
collection of two input relationships that can be composed into a single output rela-
tionship. What makes this abstraction technique powerful is the large number of sim-
ple rules (121 rules for three types of class relationships and various properties). 
Given the simplicity of the rules, the abstraction algorithm is very fast (see empirical 
studies in [3]); however, at the expense of precision. UML relationship semantics are 
not well-treated in the current UML specification which may lead to uncertainties 
during transitive reasoning (e.g., A calling B and B calling C may not imply A calling 
C always; see validation in Section 7). 

As input, the algorithm takes an arbitrary complex class structure and a list of ‘im-
portant classes’ (the cluster). The list of important classes is needed to distinguish 
between classes that may be abstracted and classes that may not. In Figure 3 the 
classes A and C are important and the class B is not important as it gets replaced (to-
gether with its relationships) by a higher-level relationship. A human has to make the 
decision on what classes are important as it depends on the circumstances and usage 
of the higher-level output. 
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Figure 4. Transitive Relationship between Classes 

Figure 4 shows the use of transitive (relational) reasoning in understanding the rela-
tionship between the user-defined, important, low-level classes TrackFrame and 
Tracker (from Figure 2). Although the two classes are not directly related to one an-
other, a transitive relationship can be derived by eliminating the helper classes Track-
DisplayCanvas and Scenario. Figure 4 shows that the application of Rule 68 elimi-
nates the class TrackDisplayCanvas whereas the subsequent application of Rule 118 
eliminates the class Scenario. This results in two high-level relationships between the 



two important classes which, together, are semantically equivalent to the replaced 
classes and all their relationships. 

In summary, transitive reasoning merges low-level classes and relationships into 
higher-level relationships. This form of abstraction is necessary in cases where lower-
level classes are the result of refining a relationship. For instance, the low-level class 
Scenario in above example is an index for visualization data. It does not actually con-
tain any data. It therefore does not belong conceptually  to the high-level class Data 
and neither does it belong to the high-level class TraceFrame since it does not provide 
user interface services. On a high-level it thus belongs to the relationship that binds 
the classes Visualization Display and Data. 

5   Compositional Abstraction 

While transitive reasoning is important in abstracting away low-level classes that 
belong conceptually to relationships, there are still other classes that are low-level but 
belong conceptually to high-level classes and not relationships. For example,  the low-
level classes Device, Tracker, Target, Sensor, and ChangeList capture data. They all 
belong conceptually to the high-level class Data. It would be incorrect to apply some 
form of transitive reasoning here. Compositional Abstraction, discussed in this sec-
tion, merges low-level classes that belong to single high-level classes. 

The shading used in Figure 2 indicates clusters of classes that a user defined to be 
conceptually related. Compositional abstraction is applicable to each such cluster. 
Figure 5 demonstrates this on the cluster containing the low-level classes Agree But-
ton and AboutDialog (the about dialog displays a copyright that has to be acknowl-
edged through a special agree button). Since the two low-level classes were defined by 
a user to belong conceptually to the single high-level class About Display (see name 
given to cluster in Figure 2), a new high-level class About Display can be created 
(note that we do not alter any existing class structures during abstraction but instead 
generate a new, separate class structure; see also Figure 5 bottom). 
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Figure 5. Scenario for Compositional Abstraction 

Creating higher-level classes to represent a cluster of lower-level classes is an intui-
tive and straightforward activity since the higher-level elements can be seen as place-



holders for the lower-level ones (refinement is often the exact reverse of this activity 
where a single high-level element is broken up into several low-level ones). However, 
a class is much more than a box. A class also captures structure through class attrib-
utes and methods and it captures behavior through relationships. 

services of  class = structure and behavior of class 
For a cluster of low-level classes to consistently implement a single high-level 

class, both have to exhibit the same structure and behavior. The structure and behavior 
of a high-level class is obvious since such a high-level class clearly defines its attrib-
utes, methods, and relationships. On the other hand, a cluster of low-level classes 
belonging to a single high-level class distributes its structure and behavior among the 
many lower-level classes. To complicate matters, it is generally incorrect to assume 
that the sum of the services of low-level classes is equivalent to the services of the 
high-level class. The rationale:  
• a low-level class may offer partial, low-level services  
• a low-level class may offer generic, rich services that are partially used  

Both cases above imply that individual low-level classes may provide services that 
are not being offered by its high-level abstraction. As a consequence: 

services of high-level class ⊆ sum of the services of lower-level classes 
Unfortunately, it is not possible to automatically determine which services of low-

level classes are low-level and which ones are high-level. However through another 
observation we can provide a more meaningful approximation. 

a low-level class cannot provide high-level services if it is not accessible to 
classes from other clusters  

A class is accessible by another class if a direct or indirect (transitive) calling depend-
ency exists (expressed through relationships). If a low-level class is accessed by an-
other class then its services are being used. If that low-level class is accessed by low-
level classes of the same cluster only then its services are internal within that cluster. 
Contrary, if that low-level class is accessed by low-level classes of other clusters then 
its services are publicly available. Only public services can be high-level services. 
isEntryPoint(e:Class) ↔ ∃ c ∈ classes, c ∈ clusters.classes,  

e ∈ clusters.classes, c.cluster ≠ e.cluster, existsDirectRelations(e,c) or existsTran-
sitiveRelations(e,c) 

The above definition states that a given class is a public entry point if it is part of a 
cluster and there exists another class part of another cluster that has a relationship to 
the given class.  

Figure 5 (top) continues on the previous example. It also depicts the only two 
neighboring low-level classes that directly interact with the About Display cluster. 
One of the neighboring classes is not part of any cluster (Dialog) whereas the other 
neighboring class is part of the Visualizer Display cluster (TrackFrame). Abstracting 
the About Display cluster combines the two low-level classes Agree Button and 
AboutDialog but it does not combine their services. The low-level class Agree Button 
is a support class in that only About Dialog can interact with it. Neither one of the 
other neighboring classes Dialog or TrackFrame can access it without going through 
AboutDialog. This indicates that services defined in Agree Button are inaccessible to 
classes outside the cluster and need not be abstracted. The opposite is true for the 
class AboutDialog. It is directly accessible by a class of another cluster which implies 



that its services are publicly available (isEntryPoint is true). Services of AboutDialog 
must be abstracted which also includes the inherited services of Dialog. 

The definition of the entry point has another stipulation in that either direct rela-
tions (existsDirectRelations(e,c)) or transitive relations (existsTransitiveRela-
tions(e,c)) are used to determine entry points. Why is a distinction being made here? 
The relationship between the cluster About Display and Visualizer Display is a direct 
one since the classes of both clusters have a direct relationship defined (aggregation 
between AboutDialog and TrackFrame): 
existsDirectRelations(a,b)  ↔  

∃r ∈ relations, (r.origin=a and r.destination=b) or (r.destination=a and r.origin=b) 
This definition states that there exists a direct relationship between two classes if a 

relationship exists that has both classes as origin or destination. In the low-level class 
structure in Figure 2 there are many direct relationships (any arrow between classes) 
but there is only one direct relationship between classes belonging to different clus-
ters. Note that we are not interested in direct relationships between classes of the same 
cluster (e.g., the relationship between Application and TrackFrame is not relevant).  
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Figure 6. Transitive Relationship between Classes without direct Relationships 

The lack of direct relationships between classes of different clusters does not imply 
that those classes cannot access one another. As an example, consider Figure 6 with 
the two clusters Visualizer Display and Network Input. Both clusters do not directly 
relate to one another because the low-level class ClientHandler separates them. Still, a 
calling dependency exists because class TrackFrame (part of cluster Visualizer Dis-
play) can call methods of class ClientHandler (implied through arrowhead in aggrega-
tion relationship) and those methods, in turn, can call methods of class DataInput-
Stream (part of cluster Network Input). This implies transitively that class Track-
Frame can call class DataInputStream via the ‘helper class’ ClientHandler. This tran-
sitive relationship defines TrackFrame and DataInputStream as entry points for their 
respective clusters.  
existsTransitiveRelations (a,b) ↔ deriveTransitiveRelations(a,b) ≠ ∅ 

Since clusters are user-defined sets of low-level classes that conceptually belong to 
single, high-level classes, it follows that all remaining classes not defined in clusters 
belong to single, high-level relationships. Transitive reasoning must only use classes 
not part of any cluster since the others already belong to higher-level elements (i.e., 
higher-level classes). It follows that there is no transitive relationship between Appli-
cation and DataInputStream through the ‘helper classes’ TrackFrame and ClientHan-



dler. Furthermore, there are also no transitive relations going through Runnable or 
Thread because no transitive abstraction pattern applies. For a proof on these matters 
please refer to [4]. 

The previous two examples of abstracting clusters were cases of two or more 
classes per cluster with single public classes. Abstracting those clusters is relatively 
simple since the services of the high-level classes are essentially the services of the 
entry point classes. Figure 7 discusses an example of a cluster with multiple entry 
points. It shows the previously mentioned cluster Data and its five implementation 
classes Target, Tracker, Sensor, ChangeList and Device. Using the definition for 
isEntryPoint one can determine that Target, Tracker, and Sensor are entry points but 
Device and ChangeList are inaccessible (that there are transitive dependency relation-
ships between low-level class TrackFrame and the three entry point classes).  
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Figure 7. Compositional Abstraction of Multiple Entry Point Classes 

Abstracting the Data cluster requires the creation of a new class called Data with 
the combined services of the entry point classes. Data must have the attributes ‘x’ and 
‘y’ because TrackFrame can access those attributes regardless what entry point class 
is chosen. Note that each relationship, in principle, denotes a distinct access to an 
entry point class. Since some attributes are not associated with all entry point classes 
(e.g., orientation is only part of Sensor) it follows that not all attributes of all entry 
point classes are accessible through all relationships. For abstraction this implies that 
some attributes are mandatory and other attributes are optional. Mandatory attributes 
are the intersection of all attributes in entry point classes. The three entry points 
Tracker, Target, and Sensor all have in common the attributes ‘x’ and ‘y’ (mandatory 
attributes). Since the three entry points also inherit the attributes ‘time’ and ‘name’ 
from Device those attributes also become mandatory (recall a similar exception in-
volving inheritance relationships in Figure 5). Optional attributes are the union of all 
attributes in entry point classes (whether inherited or not) minus mandatory attributes. 
For example, an instance of Data might have attributes like ‘direction’ or ‘orientation’ 
but likely not both. Optional attributes are denoted with rectangular brackets (i.e., 
[direction : float]). 



Methods can be treated like attributes. Mandatory methods are methods used in all 
entry point classes whereas optional methods are all methods used in all entry point 
classes minus mandatory ones. Relationships will be discussed later. 

for all cl ∈ clusters
classesInCluster  = classes.collect( c : class | c.cluster = cl)
entryPoints = classesInCluster.collect(c | isEntryPoint(c))
allMethods = ∅
for all e ∈ entryPoints

allMethods = allMethods +
e.methods.collect(m | m. isPublic=true) +
e.parents.methods.collect(m | m.isPublic=true)

mandatoryMethods = allMethods
for all e ∈ entryPoints

mandatoryMethods = mandatoryMethods.
intersection(e.methods+e.parents.methods)

optionalMethods = allMethods - mandatoryMethods
allAttributes = ∅
for all e ∈ entryPoints

allAttributes = allAttributes +
e.attributes.collect(a | a.isPublic=true)
e.parents.attributes.collect(a | a.isPublic=true)

mandatoryAttributes = allAttributes
for all e ∈ entryPoints

mandatoryAttributes = mandatoryAttributes.
intersection(e.attributes+e.parents.attributes)

optionalAttributes = allAttributes – mandatoryAttributes
cl.abstraction = new Class(name = cluster.name)
cl. abstraction. mandatoryMethods = mandatoryMethods
cl. abstraction. optionalMethods = optionalMethods
cl. abstraction.mandatoryAttributes = mandatoryAttributs
cl. abstraction.optionalAttributes = optionalAttributes

end //for all  
Figure 8. Compositional Abstraction Algorithm 

Figure 8 summarizes the algorithm for compositional abstraction as was discussed 
in this section. For each cluster, a new, high-level class is created with the name of the 
cluster and the mandatory and optional services derived out of entry point classes. 
Entry point classes are identified using the isEntryPoint definition we gave earlier. 
The command ‘collect’ traverses a list of classes part of the same cluster in 
‘classesInCluster’ and returns only those for which the given condition holds (e.g., 
isEntryPoint is true). The variable ‘allMethods’ captures the union of all public meth-
ods in entry points (note: only public methods are accessible from the outside). The 
variable ‘mandatoryMethods’ is the intersection of all methods in entry points and the 
variable ‘optionalMethods’ is the union of all methods in entry points minus manda-
tory methods. Mandatory and optional attributes are computed in the same fashion. 

6   Relational Reasoning 

Relational reasoning extends compositional reasoning in that relationships may 
play two distinct roles during abstraction: Relationships may be either associated with 



abstract classes or with abstract relationships. An obvious case is the relationship 
between Scenario and TrackDisplayCanvas which is used for transitive reasoning and, 
consequently, is associated with an abstract relationship (see Figure 4). A counterex-
amples is the relationship between Device and ChangeList in Figure 7 which is associ-
ated with clusters and consequently with abstract classes. 

abstractableRelations = ∅
for all cluster∈ clusters

for allc1∈ cluster.classes
for allc2∈ classes, c2.cluster≠ ∅, c2.cluster≠ cluster

abstractableRelations = abstractableRelations +
relations(c1, c2) + transitiveRelations(c1, c2)

end //for all
end //for all
entryPoints = cluster.classes.collect(c | isEntryPoint(c))
relationRelevant = abstractableRelations.refinements
classRelevant = entryPoints. parents.outgoingRelations +

entryPoints.outgoingRelations– relationRelevant
allRelations = ∅
for alle ∈ entryPoints

allRelations = allRelations +
e. outgoingRelations + e.parents.outgoingRelations

mandatoryRelations= allRelations
for alle ∈ entryPoints

mandatoryRelations= mandatoryRelations. intersection(e. outgoingRelations +
e.parents.outgoingRelations)

optionalRelations =allRelations- mandatoryRelations
cluster.abstraction.mandatoryAttributes = cluster.abstraction.mandatoryAttributes  +

convertToAttributes(mandatoryRelations.collect( r:Association | r.connection(r.destination).isPublic)
cluster.abstraction.optionalAttributes = cluster.abstraction.optionalAttributes  +

convertToAttributes(optionalRelations.collect( r:Association | r.connection(r.destination).isPublic)
end //for all
for all r ∈ abstractableRelations

abstraction = new Relation(properties like r)
abstraction.origin = r.origin.cluster.abstraction
abstraction.destination = r.destination.cluster.abstraction

end //for all

Figure 9. Relational Abstraction Algorithm 

Relationships that are associated with abstract relationships are only needed to de-
rive transitive relationships. Relationships that are associated with abstract classes 
(clusters) might be used to derive abstract attributes. UML association and aggrega-
tion relationships define attributes implicitly. For instance, the relationship from De-
vice to ChangeList is an aggregation (a variation of an association). This aggregation 
uses the role name “+changes” to reference instances of ChangeList. The role name is 
essentially a unique identifier within Device which corresponds semantically to a 
global variable (an attribute). An association or aggregation thus may cause an ab-
stract attribute if it is originating from an entry point class and if it is public. In Figure 
7, the aggregation “changes” causes an attribute in Data because it satisfies both 
above conditions: (1) it is accessible because an entry point inherits it and (2) it is 
public as indicated through the plus symbol in front of the name (plus is public and 
minus is private). Other relationships like the one between TrackFrame and MenuBar 
do not become attributes because they are either inaccessible or private. Using the 



name of the association as the attribute name and the name of the destination class as 
the attribute type converts an association into an attribute. 
convertToAttribute (a:Association) ↔  

new Attribute(name = a.name, type=a.destination.name) 
Figure 9 gives the algorithm for relational reasoning using the transitive relation-

ship technique discussed before. First, the algorithm locates all direct or transitive 
relationships between clusters (relationships between classes outside clusters are not 
of interest here) and stores them into the variable ‘abstractableRelations.’ Next, the 
entry points are calculated analogous to Figure 8. Relationships associated with ab-
stract relations are computed and stored in ‘relationRelevant.’ Then relationships 
associated with classes are computed by looking at outgoing relationships of entry 
points or their parents minus the ones that are associated with relationships. If a rela-
tion is accessible by all entry points then that relation might become a mandatory 
attribute; otherwise it might become an optional attribute (analogous to Figure 8). 
Whether or not a relationship becomes an attribute is determined next by converting 
only those relationships that are associations (note: aggregations are also associations) 
and that have a publicly accessible destination. In a last step, all abstractable relations 
are made into abstract relations by taking over their properties and defining their ab-
stract origins and destinations which are the abstract classes created in Figure 8. 

Figure 10 shows the result of abstracting the implementation class in Figure 2. In 
comparison with the existing design class structure in Figure 1, the abstraction is in-
deed similar but has a few differences. These differences are possible inconsistencies. 

Data
_time : int
_name : String
_x : float
_y : float
[_direction : float]
[_speed : float]
[_orientation : float]
changes : ChangeList
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Figure 10. Abstracted Implementation Class Structure 

7   Validation 

Abstraction aims at reversing the refinement process that classes undergo. The 
process of abstraction is analogous to a magnification glass with which one may 
‘zoom out’ any degree to inspect a complex class structure. User input is required in 
defining clusters of related, low-level classes. Finding clusters in a complex class 
structure varies in difficulty. The main problem of finding clusters is finding their 
precise boundaries. The full automation provided by our approach has the advantage 
that cluster boundaries may be explored iteratively through trial-and-error.  



Our approach is based on transitive reasoning. This has the advantage that certain 
properties can be guaranteed, Most importantly, our approach to transitive reasoning 
is conservative in identifying all possible transitive relationships [4]. However because 
of this conservative nature, it may also report additional, false transitive relationships. 
Extensive empirical studies [4] have shown this error to be little (<5% of all reported 
results). 

As a result, the identification of entry points is correct if it is based on direct rela-
tionships but potentially incorrect if it is based on transitive relationships. However, 
due to the conservative nature of transitive reasoning it is guaranteed that all entry 
points are identified with a low likelihood of additional, wrong ones (<5%). 

In  summary, our approach is guaranteed to identify all high-level classes, relation-
ships, and class services (i.e., attributes and methods). False positives may exist which 
implies that the true abstraction result is a subset of the reported abstraction result. 
Human intervention is required to determine this subset which requires investigating 
the results of transitive reasoning and the services of entry point classes. 

8   Related Work 

Many techniques have been proposed to aid the understanding of complex class 
structures. There are reading techniques like inspection [7] that use group effort to 
cope with complexity. Most of these techniques are manual and involve high effort 
and manpower. Using multiple views is an effective form of separating concerns [14]. 
Class structures can be subdivided into viewpoints [9] where partial and potentially 
overlapping portions of the structure are depicted. The sum of all diagrams is the 
complete class structure itself. Multiple views make use of the fact that one does not 
need access to all classes to understand a particular concern. Still, multiple views 
cannot avoid the problem of class replacement and substitution (fragmentation dis-
cussed earlier) and although multiple views can make classes belonging to individual 
concerns more understandable, they generally cannot be used to project a high-level, 
simpler abstraction of a complex class structure. 

Slicing [13] is another technique to cope with software complexity. Although it is 
primarily used on source code, one could imagine its use on design languages like 
class diagrams. Slicing uses some property or rule and investigates how such a rule 
might become valid. For instance, a ‘slice’ could display all possible design elements 
that might affect a variable directly or indirectly. Slicing, like the separation of con-
cerns, can be very effective in understanding individual concerns within complex class 
structures but it does not improve the overall understanding (abstraction) of a complex 
system.  

Techniques have been proposed to formalize UML class diagrams [2]. Those tech-
niques are important to improve the precision and meaning of model elements like 
classes and relationships. Although, a more precise definition of class diagrams can 
significantly aid its understanding and use (i.e., code generation, verification, etc.) it 
itself does not provide abstraction. Still, a more precise definition may make it easier 
to devise more reliable abstraction techniques. 



We see the key to class abstraction in automated transformation. For example, the 
approach proposed by Fahmy and Holt [8] provides a set of transformation rules that 
can be applied onto class-like structures. Indeed there is some similarity between some 
of their rules and our abstraction technique (e.g., lifting). The main problems we see 
are that their rules are too few in number for comprehensive abstraction and they ex-
pect the rules to be applied manually. Racz and Koskimies [11] devised a technique to 
evaluate transitive relationships (indirect relationships spanning multiple classes in 
class structures). Their technique is very similar to our approach to transitive reason-
ing but their technique is only semi-automated. Also, as was shown in this paper, un-
derstanding transitive relationships between classes only provides limited abstraction 
and is not sufficient to derive abstract properties of class structures in general. 

Lieberherr et al. [10] defined class transformation methods to capture evolution. 
They argue that class evolution is inevitable and result in new class models that, pref-
erably, should be as consistent as possible with earlier versions. Although, one could 
argue that evolution is a form of refinement, we take a narrower stance. For us, re-
finement has to maintain consistency within a given model. Their work thus addresses 
evolutionary “refinement” and “consistency issues” that are considered outside the 
scope of this paper. Nonetheless, one can envision a strong need for our approach to 
be combined with theirs so that model refinement and abstraction can be comple-
mented with model evolution. 

9   Conclusions 

Understanding a complex class structure does not necessarily require the under-
standing of every single class. Clusters of classes like buttons, windows, text fields, or 
scroll bars are integral parts of user interfaces and in some cases it is not necessary to 
know their details. This paper introduced a technique on how to abstract low-level 
classes into higher-level classes using these kinds of clusters to direct the abstraction. 
The technique composes classes within clusters into abstract classes; and classes out-
side clusters into abstract relationships. As a result low-level properties can be re-
interpreted as higher-level properties. Our approach is a lightweight, easy-to-use, and 
iterative way of simplifying the complexity of class structures. Abstraction results can 
improve the understanding of a model or ease the navigation between its elements. We 
also used the approach for consistency checking and reverse engineering. 

Our approach was validated on numerous real applications. We found that our ap-
proach produces useable abstractions very fast. The quality of results is determined by 
the quality (correctness) of the clusters and the approach tends to error in favor of 
showing relationship in case of doubt. We observed that this only becomes a problem 
if the degree of abstraction is very high (1:10 abstraction ratio or higher). Given the 
iterative nature of our technique, we also found it easy to reason about correct cluster 
boundaries using a trial-and-error-like approach. If an abstraction does not match a 
mental model then a simple adjustment of the cluster boundary may resolve the prob-
lem. If the problem persists then the difference may indicate an inconsistency. 



It is future work to improve the presented abstraction technique by integrating it 
with other (UML) diagrams. Since other diagrams may embody additional modeling 
data, it may be used to make abstractions stronger and more reliable. It is also future 
work to investigate how the semantics of a relationship is affected if it is composed of 
low-level classes. 

Acknowledgements 
We wish to thank Philippe Kruchten, Barry Boehm, Cristina Gacek, Paul Grunbacher, Ne-

nad Medvidovic, DaveWile, and the anonymous reviewers for insightful comments. This work 
was support by DARPA through contracts F30602-00-C-0218 and F30602-99-1-0524. 

References 
[1]  Boehm B., Egyed A., Kwan J., and Madachy R.:  Using the WinWin Spiral Model: A 

Case Study. IEEE Computer, 1998, 33-44. 
[2]  Bourdeau R. H. and Cheng B. H. C.:  A Formal Semantics for Object Model Diagrams. 

IEEE Transactions on Software Engineering (TSE), 1995. 
[3]  Egyed, A.: "Semantic Abstraction Rules for Class Diagrams," Proceedings of the 15th 

IEEE International Conference of Automated Software Engineering (ASE), Grenoble, 
France, September 2000. 

[4]  Egyed A.:  Automated Abstraction of Class Diagrams. ACM Transaction on Software 
Engineering and Methodology (TOSEM) 11(4), 2002, 449-491. 

[5]  Egyed, A., Horling, B., Becker, R., Robert Balzer: Visualization and Debugging Tools, In 
Distributed Sensor Networks: A multiagent perspective, edited by Victor Lesser, Charles 
L. Ortiz Jr., and Milind Tambe. Boston, Kluwer Academic Publishers, 2003. 

[6]  Egyed, A. and Kruchten, P.: "Rose/Architect: A Tool to Visualize Architecture," Proceed-
ings of the 32nd Hawaii International Conference on System Sciences (HICSS), January 
1999. 

[7]  Fagan M. E.:  Advances in software inspections. IEEE Transactions on Software Engi-
neering (TSE) 12(7), 1986, 744-751. 

[8]  Fahmy, H. and Holt, R. C.: "Using Graph Rewriting to Specify Software Architectural 
Transformations," Proceedings of the 15th IEEE International Conference on Automated 
Software Engineering (ASE), Grenoble, France, September 2000, pp.187-196. 

[9]  Finkelstein A., Kramer J., Nuseibeh B., Finkelstein L., and Goedicke M.:  Viewpoints: A 
Framework for Integrating Multiple Perspectives in System Development. International 
Journal on Software Engineering and Knowledge Engineering, 1991, 31-58. 

[10]  Lieberherr K. J., Hursch W. L., and Xiao C.:  Object-Extending Class Transformations. 
Journal Formal Aspects of Computing 6(4), 1994, 391-416. 

[11]  Racz, F. D. and Koskimies, K.: "Tool-Supported Compression of UML Class Diagrams," 
Proceedings of the 2nd International Conference on the Unified Modeling Language 
(UML), Fort Collins, CO, October 1999, pp.172-187. 

[12]  Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference Man-
ual. Addison Wesley, 1999. 

[13]  Snelting G. and Tip F.:  Understanding Class Hierarchies Using Concept Analysis. ACM 
Transactions on Programming Languages and Systems, 2000, 540-582. 

[14]  Tarr, P., Osher, H., Harrison, W., and Sutton, S. M. Jr.: "N Degrees of Separation: Multi-
Dimensional Separation of Concerns," Proceedings of the 21st International Conference 
on Software Engineering (ICSE 21), May 1999, pp.107-119. 


